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Nuclear physicists developed three distinct mod-
els to describe the structure of nuclei. These mod-
els, namely, the shell (independent particle) model,
liquid-drop and cluster models, are based on differ-
ent assumptions about the phase state of the nucleus.
The dilemma of nuclear structure theory is that these
mutually exclusive models work surprisingly well for
qualitative and quantitative explanation of certain
limited data sets, but each model is utterly inappro-
priate for application to other data sets. We now
understand, however, that the problem of the nuclear
matter cannot be solved in a consistent way, if it is
based on conception of binary nucleon–nucleon in-
teractions only. Three-body forces, introduced to im-
prove the situation, do not provide a solution because
the three-body problem, even in classical physics, still
contains unanswered questions.

The majority of the physics community believes
that the fundamental theory of the strong interac-
tions is Quantum Chromodynamics (QCD). However,
the description of the dynamical structure of hadrons
and, especially, nuclei in the framework of QCD has
thus far remained an unsolved problem. Moreover,
quark degrees of freedom manifest themselves, as con-
ventionally accepted, at high-momentum transfer and
high densities and temperature. Hence, the most im-
portant problem of nuclear physics concerns the role
of quarks in forming nuclear structure: how are nu-
cleons bound inside nuclei and do quarks manifest
themselves explicitly in the ground-state nuclei?

Quark structure of nuclei is analyzed in the
framework of the Strongly Correlated Quark Model
(SCQM) of a nucleon structure [1, 2, 3]. Pro-
posed by one of the authors (G.M.), this semiclassi-
cal model demonstrates the interconnection between
constituent and current quark models. According to
the model quark and antiquark in mesons and three
quarks in baryons oscillate around the origin in corre-
lated motion. Derived interquark potential explicitly
demonstrates that relativistic (current) quark config-
urations are located at the origin of oscillation and
constituent (nonrelativistic) quarks are at maximal
displacements, respectively. Putting aside the mass
and charge differences of valence quarks one can say
that inside nucleons three quarks, surrounded by con-
densate of sea quarks and gluons, oscillate along the
bisectrices of an equilateral triangle with spins per-
pendicular to the plane of oscillation. It turns out
that these oscillations are nonlinear and the SCQM
implies the breather solution of sine-Gordon equation
[3].

The parameters of the model, namely, the max-
imum displacement, xmax, and the parameters of
the gaussian function, σx,y,z, for hadronic matter

distribution around VQ are chosen to be xmax =
0.64 fm, σx,y = 0.24 fm, σz = 0.12 fm. They are
adjusted by comparison to calculated and experimen-
tal values of the total and differential cross sections
for pp and pp collisions [2]. The mass of the con-
stituent quark at maximum displacement is taken as
MQ(Q)(xmax) = 1

3

(
m∆+mN

2

) ≈ 360 MeV, where m∆

and mN are masses of the delta isobar and nucleon
correspondingly. The current mass of the valence
quark is taken to be 5 MeV. Because of plane oscilla-
tions of VQs and the flattened shape the hadronic
matter distribution around them, the 3-quark sys-
tem, representing baryons, is a non-spherical, oblate
object. Its dimension perpendicular to the plane of
VQs oscillations is flattened. This feature of nucleons
plays an important role in the structure of nuclei.

The correlations among quarks have noteworthy
implications for the construction of any nucleus. Here
it is seen that quark correlations emerging from color
binding between quarks in different nucleons is the
basic mechanism underlying the nuclear force. With
regards to the spin and flavor alignment of adjacent
quarks, we should take into account the fact that
the multiquark states of 6, 9, 9, and 12 quarks in
deuteron, 3H, 3He and 4He belong to the completely
antisymmetric representation of the SU(12) group
which contains the direct product SU(2)flavor ⊗
SU(2)spin ⊗ SU(3)color. That is, up to 12 quarks
can occupy the s state. Some quark configurations in
the above multiquark systems built according to the
group representations correspond to, so-called, “hid-
den color” states as these can not be represented in
term of the free (color-singlet) nucleons. We restrict
the multiquark configurations by those which result
in the color-singlet nucleons composing the nuclei. In
that way, binding between nucleons occurs when two
quarks at linkage, being in antisymmetric color state
have different isospins (antisymmetric) and parallel
spins (symmetric). This is a basic rule for the con-
struction of any multiquark or multinucleon system.

Noting that three quarks inside nucleons
are totally antisymmetric in the color space
and two quarks from different nucleons at
linkage are in the antisymmetric color state
( 3 ) having different flavors and parallel spins, one
can construct all light and medium nuclei. The three-
nucleon system is formed by the binding of two quarks
of each nucleon with quarks of two other nucleons
according to the above rules. Three-nucleon nuclei,
namely 3H and 3He, represent triangular configura-
tions with three quarks at free ends. Completion of
a four–nucleon system, 4He, from a three-nucleon one,
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Table 1: Correlation of the experimental values of binding energy with the number of quark loops and unbound
quark ends.

Nucleus Binding energy/bond, MeV Quark loops Unbound quark ends
2H 2.22 0 4
3H 2.83 1 3
3He 2.57 1 3
4He 7.07 4 0

occurs by binding the free quark ends in 3H (3He)
with the three quarks of an additional proton (neu-
tron) again in accordance with the above rules. Here
we should make one remark. As seen from the Table,
the binding energy per one bond is minimal for the
deuteron and maximal for the 4He nucleus. This vari-
ability is due to the number of quark or color loops
and the number of unbound quarks ends. Quark or
color loops are created by the quark ends of three
nucleons, as in 3H and 3He. The more color loops
the larger is the binding energy. On the other hand
the more unbound quark ends the less is the binding
energy. The maximal binding energy of 4He is due
to the presence of four color loops, binding all quark

ends of the four nucleons. Exotic isotopes of 4He,
6He and 8He are (loosely) bound systems due to the
presence of color loops created by dineutron bounds
with the protons of core the 4He nucleus. Hence, only
the dineutron configuration in 6He nucleus is realized
but not the cigar-like one. Removal of one of the neu-
trons composing a dineutron destroys the color loop
and the other neutron becomes unbound. The 8He
nucleus is the last bound state helium isotope and
there is no possibility for a 10He bound state because
no more color loops can be created.

Starting from the structure of the 4He, it can be
shown that all nuclei possess 3D-crystal-like structure
(Fig. 1).

Figure 1: Quark composition of octahedron faces for building of s - , p - and d - shells, respectively a), b), c).
d) Three nested octahedra corresponding to these three shells

Indeed, pairs of flattened protons and neutrons are
located on opposite faces of an octahedron with a
common vertex. In this geometrical configuration
four nucleons are in an s state that corresponds to
the first s shell of the shell model. Next, the p shell
can be represented as a larger octahedron with two
3He triangles instead of protons and two 3H triangles
instead of neutrons. The triangles are located par-
allel to empty faces of the 4He octahedron, the free
quark ends of these triangles are coupled as in the 4He
octahedron. This octahedron with the nested 4He
octahedron represents the nucleus of 16O. The next
shell with principal number n = 2 is constructed in
the same manner, extending triangles beforehand by
adding a row of three protons to the row of two neu-

trons in 3H and a row of three neutrons to the row of
two protons in 3He. Again, these triangles are located
in couples on opposite faces of an octahedron paral-
lel to unoccupied faces of the nested p octahedron.
Construction of the next shells is performed in the
same manner by extending triangles with new rows
of neutrons and protons. The nuclei built in accor-
dance with the model are found to exhibit symmetries
that are isomorphic with the independent particle de-
scription (shell model) of nucleon states. The model
reproduces not only n shells but shell/subshell struc-
ture implied by the wave equation of the shell model,
at least for n ≤ 2 . For larger nuclei, however, one
factor comes to play an increasingly important role
– the Coulomb repulsion among protons. This is the
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reason why nuclei with Z > 20 require excess neu-
trons. At these values of Z the Coulomb repulsion
force acting on an additional proton at a specific po-
sition decreases the depth of additional minimum of
the quark potential.

Inside nuclei constructed in this way the nucleons
aggregate into a face-centered cubic (FCC) lattice
with alternating spin and isospin layers. It turns out
that this arrangement is the basis of the FCC-lattice
model of the nuclear structure [4, 5, 6, 7], developed
about 30 years ago. For finite nuclei the FCC ar-
rangement appears as a tetrahedron (4He) and trun-
cated tetrahedrons (for larger nuclei). According to
the FCC the nucleon principal number, n, is a func-
tion of the nucleon’s distance from the center of the
lattice – leading to approximately spherical shells for
each consecutive n eigenvalue:

n = (|x| + |y| + |z| − 3)/2, (1)

where x, y, z are odd integers (Fig. 2). The first shell
(s shell) contains four nucleons with coordinates 111,

-1-11, 1-1-1, -11-1. The second shell (p shell): 12 nu-
cleons 31-1, 3-11, -311, -3-1-1, 1-31, -131, 13-1, -1-3-1,
-113, 11-3, 1-13, -1-1-3 and so on. . . The total angular
momentum value of a nucleon in the lattice

j = (|x| + |y| − 1)/2

is defined in terms of the distance of the nucleon from
the spin axis of the system – leading to roughly cylin-
drical j subshels within each n shell. The azimuthal
quantum number

m = |x|/2

is a function of the nucleon’s distance from a cen-
tral plane through the lattice. We have thus arrived
at the result that the FCC structure brings together
shell, liquid-drop and cluster characteristics, as found
in the conventional models, within a single theoretical
framework. Unique among the various lattice models,
the FCC reproduces the entire sequence of allowed
nucleon states as found in the shell model.

Figure 2: The eigenvalue symmetries in the FCC lattice for the first three shells

Summing up we would like to emphasize that trinu-
cleon configurations play an important role in forming
bound multinucleon systems. Moreover, according to
our approach, the formation of ”quark loops” is a ba-
sic element of the binding of the nuclei, both stable
and exotic. Namely, the formation of trinucleon con-
figurations is responsible for the even-even effect of
binding energies because only two additional protons
(neutrons) can form a quark loop with one nuclear
neutron (proton). Further, pairs of protons and pairs
of neutrons can form virtual alpha clusters inside the
nucleus. These mechanisms are in agreement with
the observed pairing effect of nuclear binding ener-
gies. Finally, all nuclei, even those with closed shells,
are non-axially deformed.

References

[1] G. Musulmanbekov, Nucl. Phys. Proc. Suppl. B 71,
117 (1999).

[2] G. Musulmanbekov, Proceedings VIIIth Blois Work-
shop, Ed. V. A. Petrov, (World Sci., 2000), p. 341 and
references therein.

[3] G. Musulmanbekov in Frontiers of Fundamental
Physics 4, Ed. by B. G. Sidharth (Kluwer Acad. Press,
2001), p. 109.

[4] N.D. Cook, Atomkernenergie 41, 890 (1976).

[5] N.D. Cook and V. Dallacasa, Phys. Rev. C 36, 1883
(1987).

[6] N.D. Cook and T. Hayashi, J. Phys. G: Nucl. Part.
Phys. 23, 1109 (1997).

[7] N.D. Cook Models of the Atomic Nucleus (Springer,
Berlin, 2006).

141


